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Abstract
A  new  approach  is  demonstrated  to  approximate 

computational fluid dynamics (CFD) in urban tall building 
design  contexts  with  complex  wind  interference.  This  is 
achieved by training an artificial neural network (ANN) on 
local shape and fluid features to return surface pressure on 
test model meshes of complex forms. This is as opposed to 
the use of global model parameters and Interference Factors 
(IF) commonly found in previous work. The ANN is trained 
using  shape  and  fluid  features  extracted  from  a  set  of 
evaluated principal (design) models (PMs). The regression 
function  is  then  used  to  predict  results  based  on  shape 
features  from  the  PM  and  fluid  features  from a  one-off 
obstruction model (OM), context only, simulation. For the 
application  of  early-stage  generative  design,  the  errors 
(against CFD validation) are less than 10% centred standard 
deviation σ, whilst the front-end prediction times for the test 
cases are around 20s (up to 500 times faster than the CFD).

INTRODUCTION
CFD analysis in architectural design typically involves 

response times that are obstructive to the fast iterations of 
contemporary  generative  practice.  In  this  parametric 
paradigm, architects can easily generate immense numbers 
of  alternative scenarios  but are then faced  with the  time-
consuming  task  of  evaluation  and  selection.  One  earlier 
solution  focusses  on  early-stage  design  of  tall  buildings, 
using  pre-computed  procedural  model  sets,  local 
morphological shape features, and machine learning via an 
artificial  neural  network  (Wilkinson  et  al.  2013).  It  was 
shown  that  significantly  faster  prediction  times  can  be 

achieved  whilst  minimising  approximation  errors  to  task-
appropriate levels.

A limitation  of  this  previous  work,  however, was  the 
exclusion  of  surrounding  context.  That  is,  the  approach 
treated  the  buildings  in  isolation,  with  unrealistically 
simplistic  boundary  conditions. In  this  work,  the 
morphological  features  are  extended  with  local  fluid 
properties (upstream wind speed) to support complex urban 
scenarios. This is achieved by effectively superimposing an 
isolated  building  prediction  of  an  infinitely  variable 
generative model  onto the surrounding conditions (a  one-
off, context-only simulation.

Many  attempts  have  been  made  to  approximate  or 
generalise this kind of complex wind interference, i.e. the 
effect  of  multiple  buildings  in  the  domain  (see  Table  1). 
However, all have relied on a top-down problem definition 
in  relating  the  position  of  identical  surrounding  building 
cuboids with a global Interference Factor (IF) for the design 
building.  The  new  approach  seeks  to  improve  this 
significantly  by:  (i)  allowing  surrounding  context  of  any 
degree of complexity; and (ii) giving vertex-level resolution 
rather  than  global  effect  factors.  A  background  review, 
general methodology, and experimental results for two test 
case complexities are presented in this paper,  alongside a 
discussion on speed and accuracy.

Performative Generative Design
In  current  generative  design  practice,  enabled  by  the 

ubiquity  of  computation  and  advances  in  computer  aided 
design, integrating performance behaviours into generative 
models  has  entered  the  foreground  (Malkawi  2004). 
Examples can be seen in the use of structural, energy and 
thermal,  materiality, fabrication, and air movement (either 
internally for comfort and  indoor air quality; or externally 
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for structural or façade aerodynamics, pedestrian comfort, or 
pollution dispersal). 

Air movement, predicted through CFD, suffers the most 
from restrictive response times,  predominantly because of 
the historical focus on accuracy rather than speed (due to 
low-tolerance high-risk scenarios in aircraft and spacecraft 
engineering). Arguably, the margins for acceptable error are 
more  tolerant  in  building  design,  meaning  that  the 
simulation accuracy requirements can be relaxed or traded 
off  for  speed  improvements  (particularly  at  early  design 
stages).

In  these  early  stages  of  light-weight  (fast  and  less-
accurate)  performance  feedback,  there  can  be  more 
allowance for design exploration and optimisation. This is 
supported by the idea of speed-accuracy trade-offs (SATs, 
Chittka  et  al.  2009),  which  suggests  that  for  low-risk 
problems,  it  is  often  better  to  make  faster,  less  accurate 
decisions. In other words, in the scope of the larger problem 
of building design, it is better to have a broader perspective 
on  the  performance  variability  rather  than  an  extremely 
accurate but narrow perspective on fewer cases.

LITERATURE REVIEW
The background review will cover various methods for 

approximative  CFD,  and  the  state  of  urban  wind 
interference  with  machine  learning.  The  intention  is  to 
highlight a gap in the research, specifically on approaches to 
CFD approximation and interference generalisation that do 
not rely on global parameters or over-simplification.

Approximating Computational Fluid Dynamics
CFD is one of the most intensive and time-consuming 

simulations in the performance assessment of tall building 
design.  Specifically  for  wind  analysis,  it  is  of  great 
importance  for  the  safety,  comfort,  and  efficiency  of  tall 
buildings  and  urban  environments.  Difficulty  therefore 
typically  arises  in  guiding massing and form decisions at 
early  project  stages  due  to  the  slow  feedback  from 
conventional  CFD  approaches,  whilst  this  slow-and-
accurate CFD simulation is better invested at later stages. It 
is therefore prudent to consider compromises in the speed-
accuracy  trade-off,  sacrificing  accuracy  for  speed,  during 
these early stages so that many more design options can be 
explored.  The  need  for  application-specific  simulation 
accuracy and speed that meets the demands of early design 
stages  is  proposed  by  Lu  et  al.  (1991).  They  generate  a 

range  of  reduced-order  models  of  a  combustion  engine 
simulation, with varying accuracies and speed that can be 
used throughout the design process. The solution is posed as 
a  Pareto  front  of  non-dominated  solutions,  rather  than  a 
simpler trade-off curve based on biological decision making 
(Chittka et al., 2009).

Most approaches towards CFD approximation focus on 
simplification of the solver itself.  For instance: simplified 
meshing  routines;  the  use  of  lower-order  discretisation; 
particle-based  solvers;  or  the  avoidance  of  turbulence 
models. These methods can be classed as type-one,  solver  
approximation.

A typical example of this is the use of the 'Stable Fluids' 
fast fluid dynamics (FFD) solver developed by Stam (1999) 
for  the  computer  graphics  and  games  industry,  which 
subsequently  underwent  some  development  for  use  in 
architectural  practice  (Chronis  et  al.  2011,  2012). 
Development  and application  for  architectural  design was 
motivated by three factors: a limited, low Reynolds number 
validation  which  suggested  it  as  suitable  for  purposes 
beyond the  scope  of  the  validation (Zuo and Chen 2009, 
2010); the qualitative appearance of accuracy for turbulent 
flows;  and  its  remarkable  speed.  Zuo  and  Chen  (2009) 
implemented  the  FFD  with  a  zero-equation  turbulence 
model but found that it  performed worse since it  was not 
designed or suited to the FFD approach. It should be noted, 
however,  that  with a lack of turbulence model,  the solver 
relies  on  continuous  interaction  (such  as  game  character 
movement)  to  compensate  for  numerical  dissipation.  The 
benefit is  the availability of full fluid field data, although 
production of surface data is more difficult.

One other possible approach to this problem, type-two, 
is  solution  approximation. CFD  originated  in  aeronautics 
and astronautics, as such there is a large quantity of work 
directed  towards  modelling  and  optimisation  of  airfoils, 
fuselages, and turbine blades. An optimisation routine will 
often generate large data sets of simulation data, from which 
knowledge of the problem can be extracted.

In one case, a large model set  of turbine blades is used 
with  a  decision  tree  to  analyse  the  relationship  between 
point  deformation  of  models  and  their  change  in  surface 
pressure (Graening et al. 2008). Areas of high sensitivity can 
then  be  mapped onto  a  base  geometry  (pre-selected)  and 
used  to  focus  subsequent  analysis.  Ramanathan  and 



Graening (2009) extend this work further to incorporate an 
evolutionary  optimisation  process,  so  as  to  use  the 
information  extracted  from previous  cases  to  create  non-
random  initial  populations  of  solutions  and  to  guide  the 
evolution. 

Another  example  of  the  solution  approximation 
approach,  this  time  applied  to  building  design,  is  by 
Wilkinson  et  al.  (2013).  Predictions  are  made  through 
training an ANN on shape features extracted from a set of 
evaluated procedural tall building models.

Interference
Interference refers to the increased or decreased effect 

that nearby buildings may have upon the wind behaviour of 
one another. Within an urban situation this is very common, 
and  since  the effects  can  be  significant  it  is  necessary to 
consider  the  context  within  the  simulation.  That  is, 
independently  designed  buildings  can  not  be  treated  in 
isolation. Along with the large research fields of bluff bodies 
and computational wind engineering, interference is also a 
significant  area  of  study.  Research  on  interference  is 
especially  concerned  with  creating  generalised 
recommendations, a difficult issue due to the huge variation 
in potential scenarios.

A common  misconception  is  that  interference  always 
reduces wind loads from the isolated case. Whilst this may 
be true for a uniformed array of similar buildings in close 
proximity,  wind  loads  can  be  increased  in  the  more 
complex, realistic case. The key factors in determining the 
effects of interference are the size, shape, and configuration 
of the buildings with respect to the direction of flow. The 
effects have been shown to be as great as up to 46% under-
prediction and 525% over-prediction from regulatory loads 
on simple prismatic buildings (Stathopoulos 1984). An over-
prediction of wind pressure is less dangerous than an under-
prediction,  since  the  latter  may  cause  comfort  or  safety 
issues.  Khanduri et al. (1998) present a thorough review of 
the full past and present state of interference. A summary of 
typical studies can be found in Table 1.

In all the cases shown in Table 1, simple cuboids were 
used with typical variables such as aspect ratio and position 
configuration. In other  words,  translating the objects  over 
the two-dimensional horizontal plane. No studies have been 
performed which  consider  realistically  complex  shapes or 

contexts because the knowledge attained in evaluating them 
is typically esoteric and difficult to generalise.

A number of studies have, however, analysed the effects 
of  a  small  number  of  adjacent  structures,  leading  to  the 
development of the Interference Factor (IF). This is a ratio 
between the wind loads with and without the interference 
from  adjacent  structures  (see  Table  1).  In  a  few  cases 
generalisation,  or regression,  has been attempted  (the last 
three cases in Table 1) with the IF used as output response 
and basic scenario parameters as input features.

No. Eval. Variables Source
2 WT - Orientation

- SD (x)
- SD (y)
- Aspect ratio

Agrawal et al. (2012)

2 WT + 
CFD

- Orientation Zhang and Gu (2008)

2 & 3 WT - Breadth ratio
- Height ratio
- Profile exponent
- Configuration

Gu and Xie (2011),
Xie and Gu (2004)

5 WT - Orientation
- Aspect ratio
- Configuration

Jianguang (2008)

Multi.* CFD - Orientation
- Configuration

Zhang et al. (2005)

No. Eval. ANN Inputs Source
2 WT - SD (x)

- Profile exponent
- Aspect ratio

English and Fricke (1999)

2 WT - SD (x)
- SD (y)

Khanduri et al. (1997)

2 WT - Relative position
- Profile exponent
- Aspect ratio

Zhang and Zhang (2004)

Table 1: Summary of selected interference sensitivity studies (No. = 
Number of surrounding buildings in study, WT = Wind-Tunnel, SD = 
Separation Distance, x = along-wind, y = across-wind). * Multiple 
cuboids in a small number of configurations.

In these three cases,  this method has  been used along 
with  a  radial  basis  function  (RBF)  ANN.  The  IF  was 
calculated from wind-tunnel data from new experiments or 
collected  from existing  literature.  The  limitations  of  this 
approach are the simplistic geometries (cuboids of a single 
height),  basic  configurations  (typically  two  or  three 
buildings),  and  lack  of  output  data  (only  a  single 
performance metric: the IF, rather  than the varied surface 
pressure distribution). It should be noted that in nearly every 
case,  the studies were constrained to a limited number of 
cuboids,  a  severe  simplification  in  attempting  to  create 
generalised interference rules.



METHODOLOGY
The  approach  taken  here  is  towards  performance 

prediction  of  wind-induced  surface  pressure  from  shape 
analysis,  developing  previous  work  on  morphological 
prediction (Wilkinson et  al.  2013).  It  has  previously been 
shown  that  it  is  possible,  with  a  reasonable  degree  of 
accuracy and speed, to predict  surface pressure for  early-
stage tall building design. The limitation of their work was 
that the models were treated in isolation without any urban 
context or interference: a simplification which is addressed 
here.

Considerable time and effort can be saved if it can be 
demonstrated  that  independent  CFD  simulations  can  be 
'super-imposed' on one another with a reasonable accuracy. 
The end goal is to use a single, 'context-only' simulation, the 
Obstruction  Model (OM), to  make  a  limitless  number  of 
predictions  for  different  designs,  Principal  Models  (PM), 
using the fluid field data alone. The clear advantage of this 
is that the entire OM does not need to be re-run with every 
change of PM.

Figure 1: Local fluid features general method. (top) elevation view, 
(bottom) plan – (left) Training, A=Training model (in this case = PM), 
D=A projected upstream; (centre) Prediction, B=OM, C=Location of PM 
in field; (right) Validation, B=OM, E=PM.

The simulation of a  complex urban wind environment 
without the PM is used as input feature for predictions on 
the PM in context. This is done by simulating the isolated 
PM under a variety of different wind speeds, and using the 
shape  and  fluid  features  to  train  an  ANN  and  make 
predictions for the PM using the context-only model. The 
advantages of this method are in avoiding simulation of the 
full PM-in-context model and being able to use an existing 
context model to make predictions on a new PM. However, 
it is noted that in order to generalise this method to arbitrary 
PMs, a much greater training set would be required.

Simulation Methodology
The  CFD  solver  used  for  the  steady-state  Reynolds-

Averaged  Navier-Stokes  (RANS)  simulations  with  a  k-ε 
turbulence model is ANSYS CFX 13.0. Typically the models 
are meshed with roughly an equal number of cells (up to the 
maximum  available  computational  resources),  of  around 
four million elements. The PM simulations, for the training 
set, therefore have a finer resolution than the OM used as 
the test case. The models themselves are created in Bentley's  
GenerativeComponents.

The  following  simulation  parameters  were  assigned: 
high-resolution  advection  and  turbulence  numerics; 
isothermal  fluid  at  25ºC;  a  scalable  wall  function;  a 
convergence residual target of 1.0e-6 RMS; and a minimum 
mesh  edge  size  of  0.3m.  With  these  parameters,  the 
simulations take 30±10 minutes to converge to steady-state. 
A transient large eddy simulation (LES) could alternatively 
be  used  instead  of  RANS  to  achieve  more  accurate  and 
time-dependent surface pressures. However, due to time and 
resource  limitations  it  was  not  possible  to  include  a 
comparison in this study.

In  both  test  cases,  the  wind  speed  is  applied  at  an 
upstream inlet, with a reference speed (Ur) of 10ms−1 at a 
reference  height  (Zr)  of  10m.  The  most  commonly  used 
distribution of mean wind speed with height is the 'power-
law' expression:

Ux = Ur ( Zx / Zr ) α

The exponent α is an empirically derived coefficient that 
is dependent on the stability of the atmosphere. For neutral 
stability  conditions  it  is  approximately  0.143,  and  is 
appropriate  for  open-surroundings  such  as  open  water  or 
landscape  (Hsu  et  al.,  1994).  In  the  training  models  a 
constant wind profile is used, albeit with varying speeds, so 
as to generate a range of upstream wind speeds for every 
vertex.

Learning Methodology
In all cases, the learning process consists of a training 

and a test set of features. For a training set, STr, consisting of 
vertex feature vectors and simulated pressure extracted from 
the CFD, the ANN approximates the function  fANN:X →  P 
where  X is  the  vertex  feature  vector  and  P is  the  vertex 
pressure. X is defined as follows:

X = [Vupstream, Nx,y,z, Nσ1-5
x,y,z, Tx,y,z]



Where Vupstream is the wind speed at the vertex's projected 
position  upstream  at  a  distance  of  20m  (approximately 
midway between PM and upstream OM), Nx,y,z are the vertex 
normal  components,  Nσ1-5

x,y,z  are  the  vertex-ring  (one 
through  five)  neighbourhood   curvature  (non-absolute) 
standard deviation components, and Tx,y,z are the normalised 
vertex  position  within  the  model  limits.  For  the  test 
prediction,  Vupstream is replaced by  V, the wind speed at the 
vertex's position on the PM but measured in the OM fluid 
field.

From the 15 training set models that have been evaluated 
with various wind speeds, a total of 210,000 vertex features 
are extracted  (14,000 per  model),  from which  10,000 are 
randomly selected for  training the model.  This  number is 
sufficient for convergence of the ANN. An ANN with a non-
linear  RBF  activation  function  is  used,  with  a  network 
structure of 22:20:1, i.e. 22 inputs in the feature vector,  X, 
20 neurons in the hidden layer, and one output response, Y. 
The error is calculated as:

% Diff. = (Pprediction - Psimulation) / (Psimulation range) * 100

The  errors,  or  difference  between  the  predicted  and 
simulated  model  pressures,  are  reported  as:  the  range's 
minimum and maximum; the mean of the absolute errors; 
and the standard deviation of the absolute errors (see Table 
2).  For  both  cases,  a  kernel  density  estimation  is  given 
which  gives  a  continuous  error  density  estimation.  The 
smoothing kernels use a normal distribution and width of 
0.1%.

RESULTS
There  are  two experimental  cases:  the  first  of  simple 

geometric complexity, perhaps at the level of what may be 
found in the literature; and the second, of a real context and 
design case as might be found in practice.

Multiple Cuboid Context and Design
In  the  first  case,  five  surrounding  cubic  buildings 

constitute the OM, with the PM at the centre. As training 
data,  the  PM  is  run  independently  with  different  wind 
speeds  (1,  2,  …,  15ms-1)  without  any  wind  profile.  The 
shape and fluid features are extracted from each of  these 
models and used in the training set. The OM is also run, and 
the fluid features extracted from the appropriate positions to 
use as test features. Finally, the surface pressures on the PM 
are  extracted  from  the  full  model  for  validation.  The 

geometric setup of the full design and context (validation) 
model  is  shown in Figure 2.  Context  buildings,  OM, are 
labelled as A and design building, PM, as B.

Figure 2: Case 1 – validation model setup: (left) perspective; (centre) 
elevation; and (right) plan views with respective wind profiles.

For  each  feature,  or  vertex,  in  the  PM test  case,  the 
difference in pressure between the prediction and simulation 
is calculated. It  is seen to converge with a mean absolute 
error of 6.73%, a standard deviation absolute of 4.02%, a 
maximum error of 33.76%, and a minimum of -26.37%. The 
distribution  of  prediction  errors  is  shown  by  the  kernel 
density  estimation  in  Figure  3,  giving  a  continuous  error 
probability estimation (see Table 2 for percentiles).

Figure 3: Case 1 – kernel density estimation of errors.

The  difference  between  prediction  and  simulation  is 
visualised in Figure 4: on the left is the surface pressure on 
the design model in the full context validation simulation; 
the centre is the predicted surface pressure; and on the right 
is the vertices % pressure difference between the two.

Figure 4: Case 1 – (left) simulation; (centre) prediction; (right) error.



Considering  the  complexity  of  the  problem,  this  is  a 
solid  first  step  towards  interference  approximation  in  tall 
building design. The majority of the errors are less than 10 
to 15% and the general pressure distribution is qualitatively 
correct,  suggesting  that  the  method  has  application  in 
situations where accuracy can be compromised in order to 
facilitate rapid feedback.

Realistic Context and Design
In the second case, a realistic context model, the OM, of 

the dense City district in London is used (Figure 5), along 
with a realistic PM, design model (Figure 6), put together 
for  the  validation model  (Figure 7).  The PM is  relatively 
arbitrary,  but  is  based  on  prior  models  generated  at 
competition,  massing,  or  form-finding project  stages.  The 
design  model  is  310m tall,  as  compared  to  the  upstream 
Swiss Re (180m) and downstream Tower 42 (183m).  The 
wind direction is shown in Figure 8.

Figure 5: Case 2 – Context only model, OM, of the City, London. Raw 
geometry before simplification for meshing.

Figure 6: Case 2 – Design model, PM - wire-frame elevations and plan. 
Created in GenerativeComponents.

Figure 8 shows the test and validation CFD simulation 
results. Note that the lower image has the design model and 
the  change  in  flow  streamlines  is  visualised.  It  is  also 
interesting to note that the addition of the new design model 
has  effects  on  the  entire  flow  field,  upstream  and 
downstream. It  is evident that  the use of a simple, global 
interference factor can not do justice to the change in wind 
environment brought on by a new tall building.

Figure 7: Case 2 – validation model setup. After simplification for 
meshing. Detail resolution greater than 1m.

Figure 8: Case 2 – CFD simulation, streamline visualisation: (upper) 
context only for test data; (lower) context and design for validation.

The errors converge to a mean absolute of 5.80%, with a 
standard deviation of 9.01%, a maximum error of 11.99%, 
and a minimum of -55.71%.  The distribution of prediction 
errors is shown by the kernel density estimation in Figure 9, 
giving a continuous distribution.

Figure 9: Case 2 – kernel density estimation of errors.

Figures  10  and  11  visualise  the  predicted  surface 
pressures on the design model within the full context. The 
top  image  is  the  CFD  simulation,  the  centre  the  ANN 



prediction,  and  the  lower  the  %  difference  between  the 
simulated and predicted pressures.

Figure 10: Case 2 – Design model in full context, plan view. (upper) 
Simulation; (centre) Prediction; (lower) Difference.

Figure 11: Case 2 – Design model in full context. (left) Simulation; 
(centre) Prediction; (right) Difference.

DISCUSSION
Compared to solver approximation techniques, such as 

the  FFD  solver  and  other  low accuracy  simulations,  this 
solution approximation has the benefit of being based on a 

widely-used,  validated  CFD  solver.  In  fact,  it  may  be 
feasible to use a  solver  of any accuracy (such as LES or 
DNS, where the time improvements will be even greater). 
The comparative disadvantage is that the FFD can produce 
field rather than surface data which is useful for identifying 
flow patterns,  assessing pedestrian  comfort,  and  to  gauge 
the secondary downstream effects that a new building will 
have on others.

These developments represent an alternative approach that 
is  fundamentally  different  to  previous  attempts  at 
interference generalisation found in the literature. The use of  
local  features  rather  than  global  parameters  allows  for 
arbitrary complexity in the obstruction model and for vertex 
surface  pressure  visualisation  rather  than  the  global 
interference factor.

Response Times versus Accuracy
The errors are summarised in Table 2, and the process 

times  for  both  cases  and  for  the  conventional  and  new 
approaches are given in Tables 3 and 4 respectively. Whilst 
the response times for the new method are approximately 
seven  (case  1)  and  three  (case  2)  times  greater  than  the 
conventional method, the true benefits are with repeatability. 
Therefore, in separating out the processes into front-end and 
back-end, the new method becomes 215 (case 1) and 510 
(case 2) times faster.

CONCLUSION
The methodology and results presented here demonstrate 

an  alternative  approach  to  urban  wind  interference 
approximation  for  tall  building  design.  Through  the  two 
cases  it  is  demonstrated  that  significant  improvements  in 
response time (215 and 510 times faster when comparing 
front-end prediction times with conventional CFD) can be 
made  with  a  reasonable  trade-off  in  accuracy  (mean 
absolute errors of 5.8 to 6.7%) . Further improvements and 
generalisation can be made through the use of a procedural 
model  to  generate  the  training  shape  features,  as  well  as 
through  further  testing  on  alternative  models  and 
optimisation of the training and test features.

Case 1 Case 2
Min. / Max. range (%) * -26.37 / 33.76 -55.71 / 11.99
Mean absolute (%) 6.73 5.80
Standard deviation absolute (%) 4.02 9.01

Table 2: Error summary. (* worst case vertex prediction)



Time (s)
Process Case 1 Case 2

PM + OM simulation 4523 10709
Total 4523 10709

Table 3: Conventional CFD response times.

Time (s)
Back-end Processes (One-off) Case 1 Case 2

PM simulations (15no.) 28535 22755
OM simulation 3793 10080
Feature extraction 300 300
ANN training 180 180

Total 32808 33315

Front-end Processes (Repeatable) Case 1 Case 2
PM feature extraction 20 20
PM prediction 1 1

Total 21 21

Table 4: Proposed methodology response times.
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